DNA Methylation Regulates Transcription Factor-Specific Neurodevelopmental but Not Sexually Dimorphic Gene Expression Dynamics in Zebra Finch Telencephalon
DNA methylation; brain development; dosage compensation; epigenetics; gene expression; song learning; zebra finch.
Abstract :
[en] Song learning in zebra finches (Taeniopygia guttata) is a prototypical example of a complex learned behavior, yet knowledge of the underlying molecular processes is limited. Therefore, we characterized transcriptomic (RNA-sequencing) and epigenomic (RRBS, reduced representation bisulfite sequencing; immunofluorescence) dynamics in matched zebra finch telencephalon samples of both sexes from 1 day post hatching (1 dph) to adulthood, spanning the critical period for song learning (20 and 65 dph). We identified extensive transcriptional neurodevelopmental changes during postnatal telencephalon development. DNA methylation was very low, yet increased over time, particularly in song control nuclei. Only a small fraction of the massive differential expression in the developing zebra finch telencephalon could be explained by differential CpG and CpH DNA methylation. However, a strong association between DNA methylation and age-dependent gene expression was found for various transcription factors (i.e., OTX2, AR, and FOS) involved in neurodevelopment. Incomplete dosage compensation, independent of DNA methylation, was found to be largely responsible for sexually dimorphic gene expression, with dosage compensation increasing throughout life. In conclusion, our results indicate that DNA methylation regulates neurodevelopmental gene expression dynamics through steering transcription factor activity, but does not explain sexually dimorphic gene expression patterns in zebra finch telencephalon.
Research Center/Unit :
Giga-Neurosciences - ULiège
Disciplines :
Neurosciences & behavior
Author, co-author :
Diddens, Jolien
Coussement, Louis
Frankl-Vilches, Carolina
Majumbar, Gaurav
Steyaert, Sandra
Ter Haar, Sita
Galle, Jeroen
De Meester, Ellen
De Keulenaer, Sarah
Van Criekinge, Wim
Cornil, Charlotte ; Université de Liège - ULiège > GIGA Neurosciences - Neuroendocrinology
Balthazart, Jacques ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Département des sciences biomédicales et précliniques
DNA Methylation Regulates Transcription Factor-Specific Neurodevelopmental but Not Sexually Dimorphic Gene Expression Dynamics in Zebra Finch Telencephalon
Abali Z. Y., Yesil G., Kirkgoz T., Kaygusuz S. B., Eltan M., Turan S., et al. (2019). Evaluation of growth and puberty in a child with a novel TBX19 gene mutation and review of the literature. Hormones (Athens) 18 229–236. 10.1007/s42000-019-00096-7 30747411
Angelova M. T., Dimitrova D. G., Dinges N., Lence T., Worpenberg L., Carre C., et al. (2018). The emerging field of epitranscriptomics in neurodevelopmental and neuronal disorders. Front. Bioeng. Biotechnol. 6:46. 10.3389/fbioe.2018.00046 29707539
Apulei J., Kim N., Testa D., Ribot J., Morizet D., Bernard C., et al. (2019). Non-cell autonomous OTX2 homeoprotein regulates visual cortex plasticity through Gadd45b/g. Cereb. Cortex 29 2384–2395. 10.1093/cercor/bhy108 29771284
Arnold A. P., (1997). Sexual differentiation of the zebra finch song system: positive evidence, negative evidence, null hypotheses, and a paradigm shift. J. Neurobiol. 33 572–584.
Bernard C., Prochiantz A., (2016). Otx2-PNN interaction to regulate cortical plasticity. Neural Plast 2016:7931693. 10.1155/2016/7931693 26881132
Blekhman R., Marioni J. C., Zumbo P., Stephens M., Gilad Y., (2010). Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20 180–189. 10.1101/gr.099226.109 20009012
Bottjer S. W., Glaessner S. L., Arnold A. P., (1985). Ontogeny of brain nuclei controlling song learning and behavior in zebra finches. J. Neurosci. 5 1556–1562.
Brainard M. S., Doupe A. J., (2013). Translating birdsong: songbirds as a model for basic and applied medical research. Annu. Rev. Neurosci. 36 489–517. 10.1146/annurev-neuro-060909-152826 23750515
Chen Q., Heston J. B., Burkett Z. D., White S. A., (2013). Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species. J. Exp. Biol. 216(Pt 19) 3682–3692. 10.1242/jeb.085886 24006346
Chen X., Agate R. J., Itoh Y., Arnold A. P., (2005). Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc. Natl. Acad. Sci. U.S.A. 102 7730–7735. 10.1073/pnas.0408350102 15894627
Chen Y., Wu Y., Liu L., Feng J., Zhang T., Qin S., et al. (2019). Study of the whole genome, methylome and transcriptome of Cordyceps militaris. Sci. Rep. 9:898. 10.1038/s41598-018-38021-4 30696919
Dhawan S., Georgia S., Tschen S. I., Fan G., Bhushan A., (2011). Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 20 419–429. 10.1016/j.devcel.2011.03.012 21497756
Dillman A. A., Cookson M. R., (2014). Transcriptomic changes in brain development. Int. Rev. Neurobiol. 116 233–250. 10.1016/B978-0-12-801105-8.00009-6 25172477
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 23104886
Drnevich J., Replogle K. L., Lovell P., Hahn T. P., Johnson F., Mast T. G., et al. (2012). Impact of experience-dependent and -independent factors on gene expression in songbird brain. Proc. Natl. Acad. Sci. U.S.A. 109(Suppl. 2) 17245–17252. 10.1073/pnas.1200655109 23045667
Du P., Zhang X., Huang C. C., Jafari N., Kibbe W. A., Hou L., et al. (2010). Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics 11:587. 10.1186/1471-2105-11-587 21118553
Dzyubenko E., Gottschling C., Faissner A., (2016). Neuron-glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast 2016:5214961. 10.1155/2016/5214961 26881114
Ellegren H., Hultin-Rosenberg L., Brunstrom B., Dencker L., Kultima K., Scholz B., (2007). Faced with inequality: chicken do not have a general dosage compensation of sex-linked genes. BMC Biol. 5:40. 10.1186/1741-7007-5-40 17883843
Ferreira T., Rasband W., (2020). Image J User Guide [Online]. Available online at: https://imagej.nih.gov/ij/docs/guide (accessed March 26, 2020).
Gandolfi D., Cerri S., Mapelli J., Polimeni M., Tritto S., Fuzzati-Armentero M. T., et al. (2017). Activation of the CREB/c-Fos pathway during long-term synaptic plasticity in the cerebellum granular layer. Front. Cell. Neurosci. 11:184. 10.3389/fncel.2017.00184 28701927
Gouil Q., Keniry A., (2019). Latest techniques to study DNA methylation. Essays Biochem. 63 639–648. 10.1042/EBC20190027 31755932
Grant C. E., Bailey T. L., Noble W. S., (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27 1017–1018. 10.1093/bioinformatics/btr064 21330290
Heberle E., Bardet A. F., (2019). Sensitivity of transcription factors to DNA methylation. Essays Biochem. 63 727–741. 10.1042/EBC20190033 31755929
Hebestreit K., Dugas M., Klein H. U., (2013). Detection of significantly differentially methylated regions in targeted bisulfite sequencing data. Bioinformatics 29 1647–1653. 10.1093/bioinformatics/btt263 23658421
Hensch T. K., (2005). Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6 877–888. 10.1038/nrn1787 16261181
Hirayama T., Tarusawa E., Yoshimura Y., Galjart N., Yagi T., (2012). CTCF is required for neural development and stochastic expression of clustered Pcdh genes in neurons. Cell Rep. 2 345–357. 10.1016/j.celrep.2012.06.014 22854024
Itoh Y., Melamed E., Yang X., Kampf K., Wang S., Yehya N., et al. (2007). Dosage compensation is less effective in birds than in mammals. J. Biol. 6:2. 10.1186/jbiol53 17352797
Itoh Y., Replogle K., Kim Y. H., Wade J., Clayton D. F., Arnold A. P., (2010). Sex bias and dosage compensation in the zebra finch versus chicken genomes: general and specialized patterns among birds. Genome Res. 20 512–518. 10.1101/gr.102343.109 20357053
Jarvis E. D., (2019). Evolution of vocal learning and spoken language. Science 366 50–54. 10.1126/science.aax0287 31604300
Jia C., Brown R. W., Malone H. M., Burgess K. C., Gill W. D., Keasey M. P., et al. (2019). Ciliary neurotrophic factor is a key sex-specific regulator of depressive-like behavior in mice. Psychoneuroendocrinology 100 96–105. 10.1016/j.psyneuen.2018.09.038 30299260
Karemaker I. D., Vermeulen M., (2018). Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36 952–965. 10.1016/j.tibtech.2018.04.002 29724495
Kelly T. K., Ahmadiantehrani S., Blattler A., London S. E., (2018). Epigenetic regulation of transcriptional plasticity associated with developmental song learning. Proc. Biol. Sci. 285:20180160. 10.1098/rspb.2018.0160 29720411
Kigar S. L., Chang L., Guerrero C. R., Sehring J. R., Cuarenta A., Parker L. L., et al. (2017). N(6)-methyladenine is an epigenetic marker of mammalian early life stress. Sci. Rep. 7:18078. 10.1038/s41598-017-18414-7 29273787
Kinde B., Gabel H. W., Gilbert C. S., Griffith E. C., Greenberg M. E., (2015). Reading the unique DNA methylation landscape of the brain: non-CpG methylation, hydroxymethylation, and MeCP2. Proc. Natl. Acad. Sci. U.S.A. 112 6800–6806. 10.1073/pnas.1411269112 25739960
Koemeter-Cox A. I., Sherwood T. W., Green J. A., Steiner R. A., Berbari N. F., Yoder B. K., et al. (2014). Primary cilia enhance kisspeptin receptor signaling on gonadotropin-releasing hormone neurons. Proc. Natl. Acad. Sci. U.S.A. 111 10335–10340. 10.1073/pnas.1403286111 24982149
Kolb B., Gibb R., (2011). Brain plasticity and behaviour in the developing brain. J. Can. Acad. Child. Adolesc. Psychiatry 20 265–276.
Kribelbauer J. F., Laptenko O., Chen S., Martini G. D., Freed-Pastor W. A., Prives C., et al. (2017). Quantitative analysis of the DNA methylation sensitivity of transcription factor complexes. Cell Rep. 19 2383–2395. 10.1016/j.celrep.2017.05.069 28614722
Kribelbauer J. F., Lu X. J., Rohs R., Mann R. S., Bussemaker H. J., (2019). Toward a mechanistic understanding of DNA methylation readout by transcription factors. J. Mol. Biol. 432 1801–1815. 10.1016/j.jmb.2019.10.021 31689433
Krueger F., Andrews S. R., (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27 1571–1572. 10.1093/bioinformatics/btr167 21493656
Linder B., Jaffrey S. R., (2019). Discovering and mapping the modified nucleotides that comprise the epitranscriptome of mRNA. Cold Spring Harb. Perspect. Biol. 11:a032201. 10.1101/cshperspect.a032201 31160350
Lister R., Mukamel E. A., Nery J. R., Urich M., Puddifoot C. A., Johnson N. D., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science 341:1237905. 10.1126/science.1237905 23828890
Liu Q., Fang L., Yu G., Wang D., Xiao C. L., Wang K., (2019). Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data. Nat. Commun. 10:2449. 10.1038/s41467-019-10168-2 31164644
Livneh I., Moshitch-Moshkovitz S., Amariglio N., Rechavi G., Dominissini D., (2020). The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat. Rev. Neurosci. 21 36–51. 10.1038/s41583-019-0244-z 31804615
Lovell P. V., Huizinga N. A., Friedrich S. R., Wirthlin M., Mello C. V., (2018). The constitutive differential transcriptome of a brain circuit for vocal learning. BMC Genomics 19:231. 10.1186/s12864-018-4578-0 29614959
Majumdar G., Yadav G., Rani S., Kumar V., (2014). A photoperiodic molecular response in migratory redheaded bunting exposed to a single long day. Gen. Comp. Endocrinol. 204 104–113. 10.1016/j.ygcen.2014.04.013 24837606
Mathelier A., Fornes O., Arenillas D. J., Chen C. Y., Denay G., Lee J., et al. (2016). JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44 D110–D115. 10.1093/nar/gkv1176 26531826
Meissner A., Gnirke A., Bell G. W., Ramsahoye B., Lander E. S., Jaenisch R., (2005). Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33 5868–5877. 10.1093/nar/gki901 16224102
Morris J. A., Jordan C. L., Breedlove S. M., (2004). Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7 1034–1039. 10.1038/nn1325 15452574
Nitta K. R., Jolma A., Yin Y., Morgunova E., Kivioja T., Akhtar J., et al. (2015). Conservation of transcription factor binding specificities across 600 million years of bilateria evolution. eLife 4:e04837. 10.7554/eLife.04837 25779349
Nugent B. M., Wright C. L., Shetty A. C., Hodes G. E., Lenz K. M., Mahurkar A., et al. (2015). Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18 690–697. 10.1038/nn.3988 25821913
Pacini C. E., Bradshaw C. R., Garrett N. J., Koziol M. J., (2019). Characteristics and homogeneity of N6-methylation in human genomes. Sci. Rep. 9:5185. 10.1038/s41598-019-41601-7 30914725
Payer B., Lee J. T., (2008). X chromosome dosage compensation: how mammals keep the balance. Annu. Rev. Genet. 42 733–772. 10.1146/annurev.genet.42.110807.091711 18729722
Pfaffenseller B., Kapczinski F., Gallitano A. L., Klamt F., (2018). EGR3 immediate early gene and the brain-derived neurotrophic factor in bipolar disorder. Front. Behav. Neurosci. 12:15. 10.3389/fnbeh.2018.00015 29459824
Price A. J., Collado-Torres L., Ivanov N. A., Xia W., Burke E. E., Shin J. H., et al. (2019). Divergent neuronal DNA methylation patterns across human cortical development reveal critical periods and a unique role of CpH methylation. Genome Biol. 20:196. 10.1186/s13059-019-1805-1 31554518
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., et al. (2015). limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. 10.1093/nar/gkv007 25605792
Robinson M. D., McCarthy D. J., Smyth G. K., (2010). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26 139–140. 10.1093/bioinformatics/btp616 19910308
Shayevitch R., Askayo D., Keydar I., Ast G., (2018). The importance of DNA methylation of exons on alternative splicing. RNA 24 1351–1362. 10.1261/rna.064865.117 30002084
Sherr E. H., (2003). The ARX story (epilepsy, mental retardation, autism, and cerebral malformations): one gene leads to many phenotypes. Curr. Opin. Pediatr. 15 567–571.
Soderstrom K., Qin W., Leggett M. H., (2007). A minimally invasive procedure for sexing young zebra finches. J. Neurosci. Methods 164 116–119. 10.1016/j.jneumeth.2007.04.007 17532050
Song I., Dityatev A., (2018). Crosstalk between glia, extracellular matrix and neurons. Brain Res. Bull. 136 101–108. 10.1016/j.brainresbull.2017.03.003 28284900
Steyaert S., Diddens J., Galle J., De Meester E., De Keulenaer S., Bakker A., et al. (2016). A genome-wide search for epigenetically [corrected] regulated genes in zebra finch using MethylCap-seq and RNA-seq. Sci. Rep. 6:20957. 10.1038/srep20957 26864856
Stroud H., Su S. C., Hrvatin S., Greben A. W., Renthal W., Boxer L. D., et al. (2017). Early-life gene expression in neurons modulates lasting epigenetic states. Cell 171 1151–1164.e1116. 10.1016/j.cell.2017.09.047 29056337
Sun Z., Cunningham J., Slager S., Kocher J. P., (2015). Base resolution methylome profiling: considerations in platform selection, data preprocessing and analysis. Epigenomics 7 813–828. 10.2217/epi.15.21 26366945
Sun Z., Xu X., He J., Murray A., Sun M. A., Wei X., et al. (2019). EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat. Commun. 10:3892. 10.1038/s41467-019-11905-3 31467272
Takahashi H., Takahashi K., Liu F. C., (2009). FOXP genes, neural development, speech and language disorders. Adv. Exp. Med. Biol. 665 117–129. 10.1007/978-1-4419-1599-3_9
Thiel G., Ekici M., Rossler O. G., (2015). RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res. 359 99–109. 10.1007/s00441-014-1963-0 25092546
Tognini P., Napoli D., Pizzorusso T., (2015). Dynamic DNA methylation in the brain: a new epigenetic mark for experience-dependent plasticity. Front. Cell. Neurosci. 9:331. 10.3389/fncel.2015.00331 26379502
Tomaszycki M. L., Peabody C., Replogle K., Clayton D. F., Tempelman R. J., Wade J., (2009). Sexual differentiation of the zebra finch song system: potential roles for sex chromosome genes. BMC Neurosci. 10:24. 10.1186/1471-2202-10-24 19309515
Tozzi A., Durante V., Manca P., Di Mauro M., Blasi J., Grassi S., et al. (2019). Bidirectional synaptic plasticity is driven by sex neurosteroids targeting estrogen and androgen receptors in hippocampal CA1 pyramidal neurons. Front. Cell. Neurosci. 13:534. 10.3389/fncel.2019.00534 31866827
University of Chicago (2020). Basic Intensity Quantification with ImageJ [Online]. Available online at: https://www.unige.ch/medecine/bioimaging/files/1914/1208/6000/Quantification.pdf (accessed March 26, 2020).
Van den Berge K., Soneson C., Robinson M. D., Clement L., (2017). stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 18:151. 10.1186/s13059-017-1277-0 28784146
Vogel Ciernia A., LaSalle J., (2016). The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat. Rev. Neurosci. 17 411–423. 10.1038/nrn.2016.41 27150399
Wade J., Arnold A. P., (2004). Sexual differentiation of the zebra finch song system. Ann. N. Y. Acad. Sci. 1016 540–559. 10.1196/annals.1298.015 15313794
Watson L. A., Wang X., Elbert A., Kernohan K. D., Galjart N., Berube N. G., (2014). Dual effect of CTCF loss on neuroprogenitor differentiation and survival. J. Neurosci. 34 2860–2870. 10.1523/JNEUROSCI.3769-13.2014 24553927
Yao B., Cheng Y., Wang Z., Li Y., Chen L., Huang L., et al. (2017). DNA N6-methyladenine is dynamically regulated in the mouse brain following environmental stress. Nat. Commun. 8:1122. 10.1038/s41467-017-01195-y 29066820
Yao B., Li Y., Wang Z., Chen L., Poidevin M., Zhang C., et al. (2018). Active N(6)-Methyladenine demethylation by DMAD regulates gene expression by coordinating with polycomb protein in neurons. Mol. Cell 71 848–857.e846. 10.1016/j.molcel.2018.07.005 30078725
Yin Y., Morgunova E., Jolma A., Kaasinen E., Sahu B., Khund-Sayeed S., et al. (2017). Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science 356: eaaj2239. 10.1126/science.aaj2239 28473536
Zhou Y., Zhou B., Pache L., Chang M., Khodabakhshi A. H., Tanaseichuk O., et al. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10:1523. 10.1038/s41467-019-09234-6 30944313